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Abstract

Background—Venous thromboembolism (VTE) affects as many as 1 in 1000 individuals in the 

United States. Although Blacks are disproportionately affected by VTE, few genetic risk factors 

have been identified in this population. The inducible heme oxygenase-1 (HMOX1) gene encodes 

a key cytoprotective enzyme with anti-inflammatory, antioxidant and anticoagulant activity acting 

in the vascular system. A (GT)n microsatellite located in the promoter of the HMOX1 gene 

influences the level of response.

Methods and Results—Using the Genetic Attributes and Thrombosis Epidemiology (GATE) 

study, we examined the association between HMOX1 repeat length and VTE events in 883 Black 

and 927 White patients and matched controls. We found no association between HMOX1 

genotypes and VTE in Whites. However, in Black patients, carrying two long (L) alleles (≥34 

repeats) was significantly associated with provoked (odds ratio (OR) 1.86, 95% confidence 

interval (CI): 1.19–2.90) or recurrent (OR 3.13, 95% CI: 1.77–5.53) VTE events.

Conclusions—We have demonstrated for the first time an association between genetic variation 

in HMOX1, and VTE in Blacks. Our results support a key role for the heme oxygenase system in 

protecting patients at increased risk for thrombosis and suggest a potential mechanism for targeted 

screening and intervention.
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Introduction

Venous thromboembolism (VTE) is a chronic, sometimes fatal disease with significant 

public health impact worldwide [1]. Defined clinically as inappropriate clotting of the blood 
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presenting as either deep vein thrombosis (DVT), pulmonary embolism (PE) or both, VTE is 

estimated to affect approximately 1 in 1000 individuals per year in the U.S. alone [2, 3]. 

Surviving VTE patients also face increased risk of recurrent thromboembolism and 

significant morbidity with post-thrombotic syndrome symptoms including pain, swelling 

and leg ulceration from venous reflux and post-thrombotic syndrome [4, 5]. In spite of the 

high burden of VTE, much of the underlying etiology remains unexplained.

The inflammatory process is increasingly being recognized as an important mechanism 

regulating thrombus formation and resolution [6, 7]. Biomarkers for inflammation, including 

C-reactive protein, have been reported to be increased in patients with VTE [8, 9]. The lysis 

of red blood cells (RBCs) abundant in the early thrombus may contribute to further 

endothelial dysfunction and thrombus propagation through cascading RBC lysis. Free heme 

from the released hemoglobin is highly inflammatory and a major source of oxidative stress 

on the endothelium [7, 10, 11].

Heme oxygenase-1 (HO-1), the inducible isoform responsible for the catabolism of heme, is 

a key cytoprotective enzyme acting in the vascular system [12]. HO-1 is upregulated in 

response to stress and is induced by stimuli including heme, oxidants, hypoxia, and certain 

cytokines. The anti-inflammatory, antioxidant and anti-apoptotic effects of HO-1 can be 

mediated through the two-fold effects of the degradation of heme. First, the removal of 

heme, which is very oxidative, prevents it from damaging cells and promoting programmed 

cell death. Second, the products of heme catabolism by HO-1, namely ferrous iron, carbon 

monoxide and biliverdin, are themselves cytoprotective acting as signaling or upstream 

molecules in anti-inflammatory, antioxidant pathways in the endothelium [12, 13].

Recent studies suggest that HO-1 activity may play an important role in VTE. Knockout 

mice which do not express HO-1 have been shown to have an enhanced inflammatory 

response and significantly impaired resolution of experimentally induced venous thrombosis 

[14]. Humans carry a (GT)n microsatellite (rs3074372) located in the promoter of the heme 

oxygenase-1 (HMOX1) gene that may influence the level of HO-1 response whereby 

individuals with lower numbers of repeats have higher inducible expression [15]. Indeed, 

Austrian VTE patients who carried longer HMOX1 (GT)n repeat lengths have been reported 

to be at an increased risk of recurrence [16].

No studies to date have explored the role of HO-1 in first VTE in Whites or in any VTE in 

Black populations, where, in spite of elevated risk, limited data on genetic factors for 

thrombosis exists [17, 18]. The Genetic Attributes and Thrombosis Epidemiology (GATE) 

study provides a unique opportunity to simultaneously determine contribution of genetic 

polymorphisms to VTE in both Black and White populations [17]. Using this case-control 

study in which both of these groups are nearly equally represented, we examine associations 

between HMOX1 (GT)n repeat length and various types of VTE events.
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Materials and Methods

Study population and clinical definitions

The GATE study design and characteristics have been previously described in detail [17, 

18]. Briefly, cases were adult patients 18–70 years of age who were admitted to one of two 

university hospitals in Atlanta, Georgia during between 1998 and 2005 and were diagnosed 

with a first or recurrent VTE. Cases were identified by review of medical charts of patients 

receiving unfractionated or low-molecular-weight heparin. DVT was confirmed by Doppler 

ultrasonography, computed tomography (CT), magnetic resonance imaging, or contrast 

venography. Confirmation of PE was made by positive angiogram, ventilation–perfusion 

lung scan, or CT. Patients with severe illness or with cognitive deficits were excluded [17].

Controls were selected from a list of patients who visited a university affiliated primary care 

clinic between 1997 and 2000; those currently taking anti-coagulant therapy or who had a 

history of VTE were ineligible. Similar to cases, controls with severe illness or cognitive 

defects were also excluded. Controls were frequency matched to cases on age, gender and 

race [17]. All self-identified Black and White individuals with DNA available for 

genotyping were included in the present analysis.

Provoked cases were distinguished from idiopathic as VTE arising within 1 week of any of 

the following settings: with cancer, in conjunction with the placement of a central line, 

during or after attendance in the intensive care unit, during or after a pregnancy, or after 

surgery, an injury, or prolonged immobilization within the previous 4 weeks. The mean time 

between the trigger for the event and its diagnosis was less than 1 week for provoked cases. 

First events were also distinguished from recurrent by self-reported history of VTE [18].

DNA analysis

Polymerase chain reaction (PCR) fragment size analysis was used to determine HMOX1 

promoter (GT)n dinucleotide repeat (rs3074372) length, using a FAM labeled forward 

primer, AGA GCC TGC AGC TTC TCA GA and an unlabeled reverse primer, ACA AAG 

TCT GGC CAT AGG AC. Amplification was performed in a 10 µl reaction (final 

concentration 1× GeneAmp® PCR buffer with MgCl2 (Applied Biosystems, Foster City, 

CA), 0.5 mM dNTPs, 0.625 µM primers (each), 5% dimethyl sulfoxide (DMSO), 0.25 U 

Amplitaq (Applied Biosystems). The PCR conditions used for labeling were 96°C for 10 

minutes, 40 cycles (92°C for 30 seconds; 51°C for 30 seconds; 72°C for 30 seconds) and 

72°C for 7 minutes, followed by a 4°C hold. Labeled products were run with an internal size 

standard (GeneScan™ −500 LIZ®) in Hi-Di™ Formamide on a 3730 DNA Analyzer, and 

fragment size was determined using GeneMapper® Software Version 4.0 software (Applied 

Biosystems).

Approximately 5% of samples were validated by DNA sequence analysis to confirm 

HMOX1 repeat length. Initial fragment amplification was performed as described above for 

fragment analysis substituting unlabeled primers. Following an ExoSap-IT (Affymetrix, 

Santa Clara, CA) reaction to remove unused primers and nucleotides, BigDye® Terminator 

v1.1 Cycle Sequencing Kit (Applied Biosystems) was used to prepare the samples for 

automated sequencing according to the manufacturer’s recommendations. Sequencing 
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reactions were further cleaned up by ethanol precipitation and re-suspended in Hi-Di™ 

Formamide. Samples were then run on an ABI 3730 DNA Analyzer, and sequences were 

reviewed using Sequencing Analysis 5.2 (Applied Biosystems).

(GT)n repeat classification

For initial analyses, the observed HMOX1 (GT)n repeat sizes were divided into three allele 

classes, short (S) with 25 or fewer repeats, medium (M) with 26 to 33 repeats, and long (L) 

with 34 or more repeats. To model the effect of carrying the longer “risk” alleles in logistic 

regression analyses, small and medium alleles were grouped together and compared to long 

(L) alleles with 34 or more repeats.

Statistical analysis

Differences in the distribution of demographic and clinical characteristics and repeat length 

categories between cases and controls were assessed using two-tailed chi-square tests, t-

tests, and Fisher’s exact tests, where appropriate. Conditional logistic regression was used to 

calculate odds ratios and 95% confidence intervals for the association between repeat length 

(L/L vs. other) and VTE among Blacks, conditioning on age and sex. Because no White 

cases had the L/L genotype, Whites were omitted from the regression analyses. The 10% 

change in effect estimate criterion was used to evaluate potential confounders (diabetes, 

obesity, high blood pressure, current smoker, family history of VTE, history of cancer, 

sickle cell disease, and Factor V Leiden). As such, the crude odds ratio was compared with 

the adjusted odds ratio for each variable individually, and those variables associated with a 

difference of 10% or more were considered confounders [19]. However, after applying the 

criterion, none of the covariates remained in the final model; thus, crude odds ratios are 

presented. SAS 9.2 software (SAS Institute, Cary, NC) was used for all analyses.

Results

Clinical characteristics

Demographic and clinical characteristics for VTE cases and controls included in this study 

are reported in Table 1. Results are reported by race, and VTE event types are dichotomized 

as follows: DVT only vs. PE and/or DVT; first occurrence vs. recurrent; and provoked vs. 

idiopathic. Regardless of race, the frequency of diabetes, family history of VTE, and history 

of cancer was higher in cases than controls. Among whites, significantly greater proportions 

of cases were obese, had high blood pressure, were current smokers and carried the Factor V 

Leiden mutation compared with controls. For both race subgroups, more than 60% of VTE 

events were classified as DVT only. The proportion of provoked VTE was 62% for White 

cases and 58% for Black cases, and the proportion of recurrent VTE was 24% for White 

cases and 20% for Black cases.

HMOX1 (GT)n repeat distribution

The HMOX1 (GT)n repeat was highly polymorphic, and the distribution of alleles differed 

by race with greater variation observed in the Black population (Figure 1). Overall, we 

observed 28 different alleles with the number of dinucleotide repeats varying from 13 to 45. 
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In addition to peaks at 23 and 30 repeats, we observed a third peak at 39 repeats in the Black 

population that was absent from the White population.

HMOX1 (GT)n repeat and VTE

For initial comparisons, the observed HMOX1 (GT)n repeat sizes were grouped into three 

allele classes: short (S) with 25 or fewer repeats, medium (M) with 26 to 33 repeats, and 

long (L) with 34 or more repeats. The distribution of the 6 possible genotype classes in cases 

and controls are shown by race in Table 2. We found no significant association between 

HMOX1 genotypes and VTE in Whites. However, the distribution of HMOX1 genotype 

classes was significantly different between Black cases and controls, with an increased 

frequency of L/L in all patients with VTE (Table 2A). When patients were stratified by 

event type, this effect became much more pronounced with an increased frequency of L/L 

genotypes in patients with provoked as well as recurrent VTE (Tables 2C and 2E). HMOX1 

allele distribution was not significantly different in Black cases with idiopathic or first VTE 

events compared to controls (Tables 2B and 2D). The relationship between genetic variation 

in HMOX1 and pulmonary embolism alone was not separately assessed due to the limited 

number of patients presenting with PE only.

For logistic regression modeling, we tested a recessive genetic effect, comparing individuals 

with L/L genotypes to all other genotype classes (Table 3). Homozygous L/L individuals 

were rare in the White population with only one control having this genotype; thus we were 

unable to model this characteristic in Whites. For Black patients, L/L genotype was 

significantly associated with provoked (odds ratio (OR) 1.86, 95% confidence interval (CI): 

1.19–2.90) or recurrent (OR 3.13, 95% CI: 1.77–5.53) VTE events. The association between 

genotype and idiopathic or first VTE events did not reach statistical significance in these 

cases, although both ORs were elevated for the L/L genotype.

To explore the difference in findings by VTE subtype post-hoc case-case analyses were 

conducted for the Black cases only (n = 440). In conditional logistic regression models 

assessing differences in the L/L genotype for provoked versus idiopathic, the association 

was not statistically significant (OR 1.29, 95% CI: 0.76–2.19). However, the L/L genotype 

was significantly associated with recurrent VTE compared with first VTE (OR 2.47, 95% 

CI: 1.40–4.36, p=.002).

Discussion

Blacks are disproportionately affected by VTE, yet there remains limited data on the 

etiology [20]. Family history of VTE has been shown to increase risk; however, other than 

one report of sickle cell trait, no genetic risk factors have been well characterized in Blacks 

[18, 21]. In the present study, we demonstrated a novel association between genetic 

variation in the vascular cytoprotective enzyme, HO-1, and VTE in Blacks. Additionally, 

this study is the first to test (GT)n repeat alleles for associations with first VTE and 

idiopathic versus provoked events in any population. Specifically, we found that Black 

patients with L/L HMOX1 promoter (GT)n repeat genotypes were at significantly increased 

risk for provoked as well as recurrent VTE.
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A robust heme oxygenase response may be particularly important to protect individuals with 

VTE disease by inhibiting thrombus formation or expansion induced by free heme and 

redox-active iron. Free pro-oxidative iron and heme-containing moieties in the bloodstream 

are highly toxic to the vasculature and can lead to endothelial dysfunction and vascular 

disease [10, 22, 23]. Interestingly, recent studies have demonstrated an important role of red 

blood cell hemolysis and hemoglobin oxidation in promoting iron-induced vascular injury 

and thrombosis in an ex vivo model system [11]. Further, these authors provided evidence 

that free hemoglobin may also contribute to thrombus development by exacerbating red 

blood cell lysis and further driving a damaging oxidative cycle [11].

Inducible HO-1 is the rate limiting enzyme responsible for the removal of damaging, highly 

oxidative free heme from the circulation. Additionally, the products of the degradation of 

heme, ionic iron, CO and biliverdin, or their immediate downstream products also contribute 

to an anti-oxidative, anti-inflammatory state and have anti-thrombotic activity [12, 24, 25]. 

DNA polymorphisms which impair or reduce HO-1 response may therefore lead to 

increased risk of endothelial dysfunction and vascular disease, including resolution of 

venous thrombosis [14]. Human patients with shorter HMOX1 promoter (GT)n repeat alleles 

might benefit by having a stronger inducible heme oxygenase response [15, 26], and indeed, 

long alleles were associated with increased risk of recurrent VTE in the only other study to 

date to examine the role of this polymorphism in VTE [16].

The distribution of allele lengths differed dramatically between Blacks and Whites in our 

study and may help to explain the difference in the incidence of VTE in the two populations 

in the U.S. Whites were significantly less likely to carry longer “risk” alleles, and the 

prominent 23 and 30 repeat sizes accounted for more than half of the alleles present. Unlike 

Mustafa and colleagues who examine risk of recurrence in a case-only series of patients with 

spontaneous first VTE [16], we found no association between HMOX1 (GT)n repeat length 

and VTE in White patients in our case-control study. The discrepancy in findings may be 

due to differences in recurrent VTE sample size and analytical approaches. The frequency of 

long alleles was similar in both studies, and a sample size of over 850 White patients was 

necessary to identify only 3 individuals with L/L genotypes [16]. Because of this rarity of 

long alleles, a larger sample size will be necessary to clarify the role of this polymorphism in 

thrombotic disease in Whites.

In contrast, we identified a pattern of greater genetic variation that was shifted toward longer 

repeats in Blacks, and more than one-quarter of the (GT)n alleles were 34 repeats or greater. 

This increased prevalence of long repeat alleles was similar to that seen in the few studies to 

date characterizing this microsatellite polymorphism in individuals with African ancestry 

[27]. We found a significant association in these patients with long allele length and all VTE 

that became more pronounced in the provoked and recurrent categories when patients were 

stratified by event type. Although the ORs were elevated for idiopathic or first VTE events, 

the association with L/L genotype did not reach statistical significance in Blacks. It is 

intriguing that our exploratory case-only analysis of L/L genotype with recurrent versus first 

VTE was significant in Blacks. However, our results are based on a relatively small number 

of cases, and additional studies will be necessary to verify whether the heme oxygenase 

response plays a differential role in the etiologies of these subtypes.
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Our results support a key role for the heme oxygenase system in protecting patients at 

increased risk for thrombosis. Our findings also suggest a potential mechanism for targeted 

screening and intervention, particularly since the risk-conferring alleles are relatively 

common in Blacks. For example, additional or extended thromboprophylactic treatment 

might be beneficial in patients at risk of provoked VTE or to prevent recurrence in those 

individuals that also carry long HMOX1 (GT)n alleles.

Our findings are subject to several limitations. First, the low prevalence of L/L genotype in 

White cases precluded the evaluation of the association between repeat length and VTE in 

the White population. Second, the cases for the GATE study represented only those patients 

who were hospitalized and did not include those who were treated for VTE in outpatient 

settings. Findings from recent studies indicate that 50–73% of patients with VTE presented 

in an outpatient setting [28, 29]; therefore our findings are only representative of individuals 

with VTE severe enough to require hospitalization. Finally, although longer HMOX1 (GT)n 

promoter repeats have been associated with impaired inducible heme oxygenase [15, 27, 

30], no functional measurements of expression levels or enzyme activity were available in 

our patient samples.

In summary, we demonstrated a novel association with genetic variation in the heme 

oxygenase system in Blacks, a population disproportionately affected by VTE in the United 

States. The odds of carrying L/L HMOX1 promoter (GT)n repeat genotypes were 

approximately two and three times greater in patients with provoked and recurrent VTE, 

respectively, compared to controls. Our findings support a key role for the heme oxygenase 

system in protecting patients at increased risk for thrombosis and suggest a novel approach 

for future targeted screening and intervention. Additional clinical and functional studies will 

be necessary to confirm our findings and further elucidate the role of impaired heme 

oxygenase response in patients at risk for VTE.
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HO-1 heme oxygenase-1

L long

M medium

OR odds ratio

PCR Polymerase chain reaction

PE pulmonary embolism
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Figure 1. HMOX1 (GT)n repeat distribution among Genetic Attributes and Thrombosis 
Epidemiology (GATE) study participants by race
Allele lengths were scored as number of dinucleotide repeats and ranged from 13 to 45 

repeats. ‘Small’ is defined as ≤25 repeats; ‘Medium’ is defined as 26–33 repeats; and ‘Long’ 

is defined as ≥34 repeats. Distribution of alleles is shown for A) 927 White and B) 883 

Black patients and matched controls.
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Table 3

Odds ratio and 95% confidence intervals for the association between genotype and VTE among Blacks*

Repeat length‡
Case

n (%)
Control

n (%) Odds Ratio† 95% CI

A. All VTE

S*/S*+S*/L 369 (83.9) 398 (89.8) REF

L/L 71 (16.1) 45 (10.2) 1.69 1.13–2.52

B. Idiopathic VTE

S*/S*+S*/L 160 (86.0) 398 (89.8) REF

L/L 26 (14.0) 45 (10.2) 1.36 0.80–2.30

C. Provoked VTE

S*/S*+S*/L 209 (82.3) 398 (89.8) REF

L/L 45 (17.7) 45 (10.2) 1.86 1.19–2.90

D. First event

S*/S*+S*/L 306 (86.7) 398 (89.8) REF

L/L 47 (13.3) 45 (10.2) 1.36 0.88–2.10

E. Recurrent VTE

S*/S*+S*/L 63 (72.4) 398 (89.8) REF

L/L 24 (27.6) 45 (10.2) 3.13 1.77–5.53

*
Findings for Whites were not modeled due to lack of cases with L/L genotype.

‡
‘S*’ is ≤33, and ‘L’ is ≥34.

†
Logistic regression models conditioned on age (≤40, 41–50, 51–60, 60+) and sex.
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